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ABSTRACT

A mapping between Banach spaces is said to be polynomially continuous
if its restriction to any bounded set is uniformly continuous for the weak
polynomial topology. Every compact (linear) operator is polynomially
continuous. We prove that every polynomially continuous operator is
weakly compact.

Throughout, X and Y are Banach spaces, Sx the unit sphere of X, and N stands
for the natural numbers. Given k € N, we denote by P(¥X) the space of all k-
homogeneous (continuous) polynomials from X into the scalar field K (real or
complex). We identify P(°X) = K, and denote P(X) := Y poo P(*X). For the
general theory of polynomials on Banach spaces, we refer to [11]. As usual, e,
stands for the sequence (0,...,0,1,0,...) with 1 in the nth position.
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To each polynomial P € P(¥X) we can associate a unique symmetric k-linear
mapping P: Xx *) xX — K so that P(z) = P(z,...,z) forall z € X. It is
well known (see [11, Theorem 2.2}) that

1Pl < [Pl < k, IIPII

Following [2], we say that a mapping f: X — Y is polynomially continuous
(P-continuous, for short) if, for every € > 0 and bounded B C X, there are a
finite set {Py,...,Pp} C P(X) and § > 0 so that ||f(z) — f(¥)ll < € whenever
z,y € Bsatisfy |Pj(z —y)| <0 (1 <j<n).

Clearly, the definition may be restated assuming that the polynomials

P, ..., P, are homogeneous.

Suppose we require the polynomials {Py,..., P,} C P(X) in the above defini-
tion to be of degree one, i.e., to be continuous linear forms on X. Then we obtain
that f is weakly uniformly continuous on bounded subsets, a notion that has been
studied by many authors (see [2]). Since a (linear) operator is compact if and
only if it is weakly (uniformly) continuous on bounded sets [4, Proposition 2.5],

every compact operator is P-continuous.

We say that anet (z,) C X converges to = in the weak polynomial topology
(pw-topology, for short) [5, §6] if for every P € P(X) we have P(z,) — P(z).
Taking advantage of an idea of [1, Proposition 4], we now show that the pw
topology is semilinear [6, p. 265]. First, note that for P € P(*X) and z,y € X,

Pz +y) =Pz +y,*®,z +y)

Zk:( ) (J)zy(k.’l)y)

PROPOSITION 1: A net (z4) C X is pw-convergent to z if and only if P (zo — )
— 0 for every P € P(X).

Proof: Clearly, it is enough to prove the result for homogeneous polynomials.
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Suppose P (z4 — ) — 0 for all P € P(X). Given P € P(*¥X), we have
P(z,) ~ P(z) =P(z + 1z, — z) — P(x)
L
= b (o7 — )k
2(],)13(1‘,(:1:& ) )
j=0
-0,

since P (z7,-) € P(*~7E). Therefore, (z) is pw-convergent to z.
Conversely, suppose (z4) is pw-convergent to z. Choose P € P(*X). Then

P(-2+2a) =§k; ( k ) P ((~a),24)

j=o 7
k
k D (-} zh—I
ng(,(j)P(( "het)
=P(z — z)
:0’

since P ((—z)7,-) € P(*-9X). |

We shall use this result without explicit mention.

It is clear that a mapping f: X — Y is pw-continuous on bounded sets if and
only if for every x € X, ¢ > 0 and bounded B C X with z € B, there are
§ > 0and {P,...,P,} C P(X) so that we have ||f(z) — f(y)|| < € whenever
|Pj(z —y)| < & for 1 <j <nandy € B. Therefore, an operator is P-continuous
if and only if it is pw-continuous on bounded sets.

Not every weakly compact operator is P-continuous. Indeed, if X = T, the
original Tsirelson space, take a weakly null sequence (z,) C Sx. Then, (z,) is
pw-null [1]. Therefore, the identity map on X is not P-continuous.

The following Lemma, whose proof is given later on, plays a key role in our

main result:

LEMMA 2: Given P € P(*,) with k even, and € > 0, there are N € N and
t € Se,, so that |P(t)| < € and

t=m(em+"'+ep~"ep~+1_"'_epzn)a

where p; < --- < paN.
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Using it, we can prove the main theorem:
THEOREM 3: Every P-continuous operator is weakly compact.

Proof: Let T: X — Y be a P-continuous operator, and assume it is not weakly
compact. We can find operators U: ¢; — X, S: ¢ = £, and V: Y — £, with
S5((tn)) == (X"ioi ti),,, so that VTU = S (see [10, Theorem 8.1]). Then S must
be P-continuous.

There is a pw-null net in S;,, with elements of the form
(1) t:%(epﬁ---qtep,v—ep,mﬁ---—em).
Indeed, given a finite set of homogeneous polynomials {Py,..., P} C P(4y), if
£, is constructed over the real field, we set P := P™ + ... 4+ P go that P is
a homogeneous polynomial of even degree. By Lemma 2, given ¢ > 0, there is
t € Sy, of the form (1) so that |P(t)| <e.

Since ||S(t)]| = 1/2, S is not pw-continuous on the unit ball, a contradiction.

If £, were complex, we would need an easy adaptation of Lemma 2 for a finite

set of polynomials that may be assumed of even degree. ]

In order to prove Lemma 2, we shall give a description of the polynomials on
/1 in the spirit of Ryan’s paper [12]. Following his notation, we write NiN) for
the set of multi-indices of degree k, i.e., the set of sequences m = (m;)$2,, with
m; € N and Z‘;’;l m; = k. We let m! = H;’il m;!, where the usual convention

0! = 1 is observed. If @ = (a;) is a sequence of scalars, then a™ := H;’il a;nj ,

where 0° is defined to be 1.

LEMMA 4:  Every P € P(¥,) may be written in the form P(t) = EmeN(N) amt™
k

for t € £1, with scalar coefficients an, satisfying the estimate
mm
‘amlﬁ < Cil| P,

for some constant Cy, > 0 depending on k. If £, is complex, we may take Cy =1,
and in the real case, Cy = (2k)* /k!.

Proof: Let P € P(¥;). If t = (t;) € £; has bounded support, we have

R oo 0
P(t) =P (Z tie,-, (k), Ztiei>
i=1 1=1

k! - 4
= Z ﬁp (61,(’.”?1.),81,...,6]' (.”fﬂ.),ej,...) ™.
mENiN) ’
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N
For each m = (m;) € N§c ), let

k!
m :—P( Sm) e ey () ,)
a m €1 €1 6_7 ,6]

If ¢ is complex, the Harris inequalities [7] (see [3, Corollary 8]) state that:

N _ m! kF
|P(e1,<r'f1.>,e1,...,ej <rff:.>,ej,...){ < ™ E P
Therefore,
Iaml < Pl

Now, suppose ¢, is real. Let £§ = Zl + i€y with the £,-norm, and define the
complexification Q € P(*) of P by

k
Qz +iy) = Z ( k ) P (mk—j,yj) .
—\J
j
By the above, if z, y have bounded support, we may write
Qlz+iy) = > amlz+iy™
meNLN)

In particular, for y = 0,

and

k
jaml _1|Q||<Z( )1ei < &2

The series Zm NtV a.,t™ defines a k-homogeneous polynomial on £;. Indeed,
k

since

m! _ efm™

KTk
(see [12, Lemma 3.2]), we have

for all m € N{™)

Yo amt™ < > laallt™

meN{ meN{"

m' k'
= Y lanl ol

-

<Cie®|| Pll|Itll%,
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where we have used the multinomial theorem, stating that for t = (¢;) € ¢;, we

Ny
mEN,c

have

We have P(t) = ZmeN(N) ant™ for every t € ¢; with finitely many nonzero
k
coordinates. By density, the equality holds for all ¢t € ¢;, and the proof is

complete. |

Using a result of [9], we may slightly improve the constant in the real case,
taking
Ci =3 [(3VE+ 0 + (3vE - 4)*].
In the proof of Lemma 2, we shall use Ramsey’s Theorem:

THEOREM 5 ([8, Lemma 29.1]): Given an infinite subset A C N, and k,n € N,
we denote by [A]* the set of all k-tuples (i1, ...,ix) in A such that i; < --- < i.
Let {Mj,...,M,} be a partition of [A]* into n disjoint sets. Then there is an
infinite subset H C A such that [H|F C M, for some 1 <r < n.

Proof of Lemma 2: Let P(t):= 3] _ov amt™, and assume |ap| < 1.
k

FIRST STEP: CONSTRUCTION OF t: Denote m(iy,... i) = €;, +--- + €;,.
We partition the closed unit disk of K into four disjoint subsets D},..., D% of
diameter not greater than v/2. With the notation of Theorem 5, let

M; = {(ir,-..,ix) € [N]*: Amis,....ix) € D1} 1<r<4).

By Theorem 5, there is an infinite set Hy C N so that [H;]* C MT for some
1 < r < 4. To fix notation, assume r = 1. Divide M] into disjoint subsets
D3, ..., D} of diameter not greater than v/2/2. Let

M5 = {(i,...,ik) € [H1]¥: apmgsy,.i) €D} (1 <7 <)
Repeating the process, we obtain a sequence H; 2 H; D - - - of infinite subsets of
N such that whenever (i1,...,%), (j1,- - -, jk) € [Hn)¥, we have

—n+3/2
Iam(il,...,ik) - am(jl,...,jk)| S 2 ™ / .

Now, choose n € N with 27713/2 < ¢. Take N > k large (see below), and
(pli" . 1p2N) € [Hn]2N- Let

tz:m(ei’l"*‘""*'emv—epN+1_"'—eP2N)‘
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SECOND STEP: COMPUTING P(t): Let m € NiN). We can assume that the
support of m is contained in that of ¢, in which case we have t™ = £2 kN %,
Otherwise, we would have t™ = 0.

Suppose first that ||m||cc > 1. The number of m’s that may be chosen with
this condition is less than or equal to

p1(N) = Ajy + Afy + - + AR,
where A}y, is the number of arrangements of size ¢ of 2N distinct elements. Hence

m 1 €
” ?)1“"& < giEN) <3
mil oo

for N large enough.
Now, if ||m|le = 1, denoting by C%, the number of combinations of size i from

N distinct elements, we have
= Ck +CLCE 2 4.+ CE2CE, + C%
multi-indices m with t™ = 2"*N~* and
A" =CNCE + GO 3+ + ORI

multi-indices m with t™ = —2-*N~—*%_ The coefficient of N* in At is

al(5)(3) e (Ol-5
wl(1)+ (5= (2%

If A:= min{A*, A"}, we can take sets

and in A™:

$,Tc {m e N |mllo, = 1} ,

both of cardinal A, so that we have t™ > 0 whenever m € S, while t™ < 0 if
m € T. By the construction of ¢, we know that |a,, — an| < € for all m € S and
m’ € T, and so

€A €
2k Nk RS

Z ant™| <

meSUT
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for N large enough.
The set R of the remaining multi-indices, i.e., m’s so that |m], = 1 and

m € SU T, has a cardinal equal to the absolute value

k
pa(N) =3 (-1)/ChCN

7=0

of a polynomial on N of degree k — 1. Therefore,

Z amt™

meR

(N) <

< 1 €
_2kapz 3

for N large enough. Hence

|P(t}] = Z amt™ + Z amt™ + Z amt™| <e. N

[lm)loo>1 meSuT meER
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