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A B S T R A C T  

A mapping between Banach spaces is said to be polynomially continuous 
if its restriction to any bounded set is uniformly continuous for the weak 
polynomial topology. Every compact (linear) operator is polynomially 
continuous. We prove that every polynomially continuous operator is 
weakly compact. 

Throughout ,  X and Y are Banach spaces, S x  the unit sphere of X,  and N stands 

for the natural  numbers. Given k E N,  we denote by P ( k X )  the space of all k- 

homogeneous (continuous) polynomials from X into the scalar field K (real or 

complex). We identify P ( ° X )  = K,  and denote P ( X )  := ~']~=o P ( k X )  • For the 

general theory of polynomials on Banach spaces, we refer to [11]. As usual, en 

stands for the sequence (0 , . . . ,  0, 1, 0 , . . . )  with 1 in the n th  position. 
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To each polynomial P E 7P(kX) we can associate a unique symmetric k-linear 

mapping P: X x  !.k! x X  ~ K so that P(x) = P (x , . . . , x )  for all x E X. It is 

well known (see [11, Theorem 2.2]) that  

k k 
[[P[I- 1[/5[[- ~.~ [[P[[. 

Following [2], we say that  a mapping f:  X --+ Y is po lynomia l l y  con t inuous  

(P -con t inuous ,  for short) if, for every e > 0 and bounded B C X, there are a 

finite set {P1,--- ,Pn} C 7v(X) and ~ > 0 so that  [If(x) - f(Y)[t < e whenever 

x, y E B satisfy ]Pj(x - y)] < ~ (1 <_ j _< n). 

Clearly, the definition may be restated assuming that the polynomials 

P 1 , . . . ,  P,~ are homogeneous. 

Suppose we require the polynomials {P1, . . . ,  P~} C 7>(X) in the above defini- 

tion to be of degree one, i.e., to be continuous linear forms on X. Then we obtain 

that  f is weakly uniformly continuous on bounded subsets, a notion that has been 

studied by many authors (see [2]). Since a (linear) operator is compact if and 

only if it is weakly (uniformly) continuous on bounded sets [4, Proposition 2.5], 

every compact operator is P-continuous. 

We say that  a net (x~) C X converges to x in the weak  po lynomia l  t o p o l o g y  

(pw-topology,  for short) [5, §6] if for every P E P(X)  we have P(x~) ~ P(x). 

Taking advantage of an idea of [1, Proposition 4], we now show that  the pw 

topology is semilinear [6, p. 265]. First, note that for P E p(kX) and x, y E X, 

P(x + y) =P(x + y, !k.!,x + y) 

j =0  

= : ~  j 
j=O 

PROPOSITION 1: A net (x~) C X is pw-convergent to x if and only ff P (xa - x )  

--+ 0 for every P E "P(X). 

Proof: Clearly, it is enough to prove the result for homogeneous polynomials. 
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Suppose P (xa - x) ~ 0 for all P E 7~(X). Given P E P(kX),  we have 

P (x , )  - P(x)  =P  (x + x,~ - x) - P(x)  

k -1  k 

j=o 

--~0, 

since/5 (x j,  .) E 7~(k-JE). Therefore, (x , )  is pw-convergent to x. 

Conversely, suppose (xa) is/no-convergent to x. Choose P E 7~(kx). Then 

j=O 

k 

5=0 J 

=P(x  - x) 

~-0, 

since t5 ( ( -x ) J ,  .) E 79(k-iX).  I 

We shall use this result without explicit mention. 

It is clear that  a mapping f :  X ~ Y is pw-continuous on bounded sets if and 

only if for every x E X,  e > 0 and bounded B C X with x E B, there are 

6 > 0 and {P1, . . .  ,Pn} C P ( X )  so that  we have Iif(x) - f(y)]] < e whenever 

]P j ( x - y ) ]  < ~ for 1 _< j _< n and y • B. Therefore, an operator is P-continuous 

if and only if it is pw-continuous on bounded sets. 

Not every weakly compact operator is P-continuous. Indeed, if X = T*, the 

original Tsirelson space, take a weakly null sequence (x, 0 C Sx .  Then, (xn) is 

pw-null [1]. Therefore, the identity map on X is not P-continuous. 

The following Lemma, whose proof is given later on, plays a key role in our 

main result: 

LEMMA 2: Given P E "P(kgl) with k even, and e > O, there are N • N and 

t • St , ,  so that [P(t)l < e and 

1 
t = ~-~ (ep, + . . .  + ep,, - epN+, . . . . .  e p i c ) ,  

where Pl < "'" < P2N. 
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Using it, we can prove the main  theorem: 

THEOREM 3: Every P-continuous operator is weakly compact. 

Proof: Let T: X --4 Y be a P-cont inuous  operator ,  and assume it is not weakly 

compact .  We can find opera tors  U: 21 -~ X,  S: £1 --4 £~  and V: Y --4 £~ ,  wi th  

S((tn))  := (~-~i~1 ti)n, so tha t  V T U  = S (see [10, Theorem 8.1]). Then  S mus t  

be P-cont inuous .  

There  is a pw-null  net in Sel, with elements  of the form 

1 
(1) t = ~-~ (epl + . . .  + epN - epN+, . . . . .  ep2N). 

Indeed,  given a finite set of homogeneous  polynomials  {P1 , . - - ,  Pn} C ~(~1), if 

£1 is cons t ruc ted  over the real field, we set P := P11 + .. .  + P,~  so t h a t  P is 

a homogeneous  polynomial  of even degree. By L e m m a  2, given e > 0, there  is 

t E S~1 of the  form (1) so tha t  IP(t)l < e. 

Since IIS(t) ll = 1/2, S is not pw-cont inuous on the unit  ball, a contradict ion.  

If  £1 were complex,  we would need an easy adap ta t ion  of L e m m a  2 for a finite 

set of polynomials  t ha t  may  be assumed of even degree. | 

In order  to prove L e m m a  2, we shall give a description of the polynomials  on 

e I in the  spirit  of Ryan ' s  pape r  [12]. Following his notat ion,  we write N (N) for 

m the set of multi-indices of degree k, i.e., the set of sequences m = ( J)j=l, with 
c ~  oo  mj C N and ~-]d=l mj  = k. We let m! -- l--[j=1 my!, where the usual convention 

cx~ m j  
0! = 1 is observed.  If a = fay)  is a sequence of scalars, then a m :---- l-[j=1 aj , 

where 0 ° is defined to be  1. 

L E M M A  4:  Every P E P(k£1) m a y  be written in the form P(t)  = ~'~meN(kN) amt m 

for t E £1, with scalar coet~cients am satisfying the estimate 

m m 
lamt--~- <- CkllPtl, 

for some  constant Ck > 0 depending on k. I f  £1 is complex, we m a y  take Ck = 1, 

and in the real case, Ck = (2k)k/k!. 

Proof: Let  P e P(k£1). If t = (ti) e £1 has bounded  suppor t ,  we have 

P(t)  = P  tiei, (.k.!, tiei 
\ i = 1  i~--1 ] 

k ! ^  
= E - ~ . P ( e l ' ( m ' ) ' e l " ' " e J ( ' ~ " ) ' e J " " )  t'~" 

mEN (N) 
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For each m = (mj) E N (N), let 

__k! ^ ( e l ,  (.m.~.), am := m!P e l , . . . , e j  (~4),ej,.../~ . 

If 61 is complex, the Harris inequalities [7] (see [3, Corollary 8]) state that: 

( ) rn'kk 
/5 e l ,  (.m.~.), e l , . . . ,  ej (.m.j.), e j , . . .  ~< m m k! IIPI[. 

Therefore, 

183 

and 

In particular, for y = 0, 

P ( x ) =  E amxm' 
mEN (N) 

.~m k ( k  ) (2k)k 
l a m l - - ~  _ < IIQll - .  < j~0 J IIP[I ---~-.T < IlPl[. 

The series ~-~ _..(N) a.~t m defines a k-homogeneous polynomial on 61. Indeed, 
~ m ~ l w  k 

since 
m! ekm m N(N) 
- -  < - -  for a l l m E  
k[ - k k 

(see [12, Lemma 3.2]), we have 

E amtm 
mEN(~ N) 

~ lamlltl r~ 
mEN (N) 

m~ = Z Io lr, t L 
mEN (N) 

-<cke k IIPll IItll k, 

m m 

laml-~- _< IIPll. 
Now, suppose 61 is real. Let / T -~ 61 + ffl with the ~l-norm, and define the 

complexification Q E ~O(kl~) of P by 

Q(x + iy) = J 

By the above, if x, y have bounded support, we may write 

Q(x + iy) -- ~ am(x + iy) m. 
mEN (N) 
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where we have used the multinomial theorem, stating that for t = (t/) E ~1, we 

have 

\ i=1 / mEN(N) 

We have P( t )  = ~meN(N)amt "~ for every t E t l  with finitely many nonzero 

coordinates. By density, the equality holds for all t E ~1, and the proof is 

complete. I 

Using a result of [9], we may slightly improve the constant in the real case, 

taking 

Ck := ~1 [(3X/~+4)k + ( 3 V ~ _ 4 ) k ]  

In the proof of Lemma 2, we shall use Ramsey's Theorem: 

THEOREM 5 ([8, Lemma 29.1]): Given an infinite subset A C_ N ,  and k , n  E N ,  

we denote by [A] k the set of  all k-tuples ( i l , . . .  , ik)  in A such that  il  < " "  < ik. 

Let {M1, . . . ,  M,~} be a partit ion of  [A] k into n disjoint sets. Then there is an 

infinite subset  H C A such that [H] k C_ Mr for some 1 < r < n. 

Proof  o f  L e m m a  2: Let P( t )  := ~meN(N)amt m, and assume laml <_ 1. 

FIRST STEP: CONSTRUCTION OF t: Denote m ( i l , . . . , i k )  := ei~ + "'" + ei~. 

We partition the closed unit disk of K into four disjoint subsets D ~ , . . . , D  4 of 

diameter not greater than vf2. With the notation of Theorem 5, let 

M~ := { ( i l , . . .  , ik)  E [N]k: am(il ..... i~) E Dr} (1 < r < 4). 

By Theorem 5, there is an infinite set HI C N so that [H1] k C M[ for some 

1 _< r < 4. To fix notation, assume r = 1. Divide M~ into disjoint subsets 

D 1 , . . . ,  D~ of diameter not greater than v~/2.  Let 

M~ := {( i l , . - .  ,ik) E [H1]k: am(i~ ..... ik) E n~} (1 < r < 4). 

Repeating the process, we obtain a sequence H1 _~/-/2 _~ . . .  of infinite subsets of 

N such that  whenever ( i l , . . . ,  ik), ( j l , . . .  ,Jk) E [Hn] k, we have 

l a m ( i l  ..... ik)  - -  a m ( j ,  ..... Jk)I --~ 2-n+3/2" 

Now, choose n E N with 2 -n+3/2 < e. Take N > k large (see below), and 

(p l , . . .  ,p2N) E [Hn] 2N. Let 

1 
t : =  ~--~ (ep, + . . .  + epN - epN+l . . . . .  ep2N). 
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SECOND STEP: COMPUTING P(t): Let m E N (N). We can assume that the 

support of m is contained in that of t, in which case we have t m = : k 2 - k N  -~.  

Otherwise, we would have t "~ -- 0. 

Suppose first that [[m[[oo > 1. The number of m's that may be chosen with 

this condition is less than or equal to 

p l (N)  := A21N + A~N + . . .  +A2k~ 1, 

where A*2N is the number  of arrangements of size i of 2N distinct elements. Hence 

E amtm < 2--£-~NkPl(N) < g 
Ilmllo~>l 

for N large enough. 

Now, if []mHoo = 1, denoting by C~v the number of combinations of size i from 

N distinct elements, we have 

multi-indices m with t m = 2-kN -k, and 

A -  : =  + c c -3 + . . . + c -lc  

multi-indices m with t m = - 2 - k N  -k.  The coefficient of N k in A + is 

0 + 2 + +  k = 

and in A - :  

2k-1 1 

If A := min{A +, A - } ,  we can take sets 

£ ,  T 

both  of cardinal A, so tha t  we have t '~ > 0 whenever m E £,  while t 'n < 0 if 

m E 7". By the construction of t, we know tha t  ]am - am, I < e for all m e £ and 

m' E T,  and so 

le~s u'~ e A e  Tarot m < ~ <'~' 
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for N large enough. 

The set ~ of the remaining multi-indices, i,e., m's so that  ]]m}]oo = 1 and 

m ¢~ $ tA 7", has a cardinal equal to the absolute value 

k 

p2(N) := 1) 3 C 3 

of a polynomial on N of degree k - 1. Therefore, 

1 e 
E amtm <- 2--k-~ o2(N) < g 

mET~ 

for N large enough. Hence 

] P ( t ) ] = [  E a~tm + E amtm + E amtm < e" 
Ilmlloo>l m~SUT mete 
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